首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1942篇
  免费   50篇
  国内免费   68篇
  2023年   13篇
  2022年   15篇
  2021年   19篇
  2020年   31篇
  2019年   35篇
  2018年   34篇
  2017年   23篇
  2016年   30篇
  2015年   32篇
  2014年   66篇
  2013年   119篇
  2012年   87篇
  2011年   142篇
  2010年   68篇
  2009年   118篇
  2008年   84篇
  2007年   103篇
  2006年   78篇
  2005年   68篇
  2004年   62篇
  2003年   62篇
  2002年   54篇
  2001年   45篇
  2000年   33篇
  1999年   27篇
  1998年   36篇
  1997年   19篇
  1996年   23篇
  1995年   17篇
  1994年   34篇
  1993年   22篇
  1992年   14篇
  1991年   17篇
  1990年   25篇
  1989年   23篇
  1988年   19篇
  1987年   14篇
  1986年   19篇
  1985年   42篇
  1984年   50篇
  1983年   30篇
  1982年   35篇
  1981年   31篇
  1980年   28篇
  1979年   25篇
  1978年   16篇
  1977年   25篇
  1976年   14篇
  1974年   11篇
  1973年   10篇
排序方式: 共有2060条查询结果,搜索用时 15 毫秒
991.
A high-throughput method is described by which Arabidopsis thaliana stems can be screened for variation in cell wall composition after hydrolysis with Driselase or trifluoroacetic acid (TFA). Driselase, a mixture of fungal enzymes, hydrolyses cellulose (to glucose) and all the major matrix polysaccharides (to monosaccharides and/or characteristic disaccharides); TFA hydrolyses the matrix polysaccharides, but not cellulose, to monosaccharides. Two different wild-type ecotypes, Columbia and Wassilewskija, showed only minor differences in wall carbohydrate composition. A small number of T-DNA-tagged populations that were screened contained individuals in which the proportion of cellulose, xyloglucan or xylan differed quantitatively from the wild-type. Differences from the wild-type were also observed in the susceptibility of the hemicelluloses to hydrolysis by Driselase, probably reflecting differences in wall architecture.  相似文献   
992.
Awano T  Takabe K  Fujita M 《Protoplasma》2002,219(1-2):106-115
Summary. Delignified and/or xylanase-treated secondary walls of Fagus crenata fibers were examined by field emission scanning electron microscopy. Microfibrils with a smooth surface were visible in the innermost surface of the differentiating fiber secondary wall. There was no ultrastructural difference between control and delignified sections, indicating that lignin deposition had not started in the innermost surface of the cell wall. There was no ultrastructural difference between control and xylanase-treated sections. Microfibrils on the outer part of the differentiating secondary wall surface had globular substances in delignified sections. These globular substances disappeared following xylanase treatment, indicating that these globules are xylan. The globular substances were not visible near the inner part of the differentiating secondary wall but gradually increased toward the outer part of the secondary wall, indicating that xylan penetrated into the cell wall and continuously accumulated on the microfibrils. Mature-fiber secondary walls were also examined by field emission scanning electron microscopy. Microfibrils were not apparent in the secondary wall in control specimens. Microfibrils with many globular substances were observed in the delignified specimens. Following xylanase treatment, the microfibrils had a smooth surface without any globules, indicating that the globular substance is xylan. These results suggest that cellulose microfibrils synthesized on the plasma membrane are released into the innermost surface of the secondary wall and coated with a thin layer of xylan. Successive deposition of xylan onto the cell wall increases the microfibril diameter. The large amounts of xylan that accumulated on microfibrils appear globular but are covered with lignin after they are deposited. Received February 20, 2001/Accepted September 1, 2001  相似文献   
993.
The aim of the study was to investigate particle and powder properties of various starch acetate powders, to study the effect of these properties on direct compression characteristics, and to evaluate the modification opportunity of physical properties for starch acetate powders by using various drying methods. At the end of the production phase of starch acetate, the slurry of starch acetate was dried using various techniques. Particle, powder, and tableting properties of end products were investigated. Particle size, circularity, surface texture, water content and specific surface area varied according to the particular drying method of choice. However, all powders were freely flowing. Bulk and tapped densities of powders varied in the range of 0.29 to 0.44 g/cm3 and 0.39 to 0.56 g/cm3, respectively. Compaction characteristics revealed that all powders were easily deformed under compression, having yield pressure values of less than 66 MPa according to Heckel analysis. All powders possessed a significant interparticulate bond-forming capacity during compaction. The tensile strength values of tablets varied between 10 and 18 MPa. In conclusion, physical properties of starch acetate could be affected by various drying techniques. A large specific surface area and water content above 4% were favorable properties by direct compression, especially for small, irregular, and rough particles.  相似文献   
994.
The synthetic cellulose model compounds methyl 4-O-methyl-beta-D-glucopyranoside and methyl 4-O-methyl-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside and related 6-O-protected intermediates were oxidized in good to fair yields using Swern-conditions or bromine/bis(tributyltin) oxide, respectively, to afford compounds containing 6-aldehyde, 3-keto, and 2,3-diketo groups. Cellobiose and oxidized monosaccharides were then labeled with the carbonyl-selective fluorescence marker 9-(7-amino-1,4,7-trioxaheptyl)-9H-carbazolecarboxamide (CCOA). The labeled derivatives serve as model compounds for the determination of minute amounts of carbonyl groups in cellulosic polysaccharides.  相似文献   
995.
A novel fed-batch approach for the production of L-phenylalanine (L-Phe) with recombinant E. coli is presented concerning the on-line control of the key fermentation parameters glucose and tyrosine. Two different production strains possessing either the tyrosine feedback resistant aroF(fbr) (encoding tyrosine feedback resistant DAHP-synthase (3-desoxy-D-arabino-heptusonate-7-phosphate)) or the wild-type aroF(wt) were used as model systems to elucidate the necessity of finding an individual process optimum for each genotype. With the aid of tyrosine control, wild-type aroF(wt) could be used for L-Phe production achieving higher final L-Phe titers (34 g/L) than the aroF(fbr) strain (28 g/L) and providing higher DAHP-synthase activities. With on-line glucose control, an optimum glucose concentration of 5 g/L could be identified that allowed a sufficient carbon supply for L-Phe production while at the same time an overflow metabolism leading to acetate by-product formation was avoided. The process approach is suitable for other production strains not only in lab-scale but also in pilot-scale bioreactors.  相似文献   
996.
Effects of cellulase on the modification of cellulose   总被引:1,自引:0,他引:1  
Cao Y  Tan H 《Carbohydrate research》2002,337(14):1291-1296
Multicomponent cellulases, purified endoglucanases and cellobiohydrolases were assayed and shown to modify pure natural cellulose (softwood pulp). Changes in structure and properties of the cellulose caused by enzymatic treatment depend on the composition, the type of enzyme, and the treatment conditions. The reactivity of cellulose for some dissolving and derivatization processes may be improved by enzymatic hydrolysis. Endoglucanases decreased the average degrees of polymerization (DP) and improved the alkaline solubility of cellulose most efficiently. The variation in the supramolecular structure estimated from the infrared spectra of the cellulose samples was found to be correlated with the reactivity and might represent wide variations in conformation caused by the breakdown of the hydrogen bonds.  相似文献   
997.
The results collected at different temperatures for ethanol acetylation by cell-bound carboxylesterase from lyophilized cells of Aspergillus oryzae have been used to investigate the kinetics and thermodynamics of this esterification in n-heptane. The occurrence of reversible unfolding followed by irreversible denaturation of the enzyme has been proposed to explain the increase in the starting rate of ethyl acetate formation with temperature observed up to 55 °C and the consequent fall beyond this threshold. The Arrhenius model has been used to estimate the apparent activation enthalpies of both the acetylation reaction (H = 29–33 kJ mol–1) and reversible enzyme unfolding (H u = 56–63 kJ mol–1). The results of residual activity tests performed with cells previously exposed at different temperatures for variable times enabled us also to estimate the first-order rate constant of irreversible denaturation (2.40 × 10–3 h–1 < k d < 8.11 × 10–3 h–1) as well as the related thermodynamic parameters (H d = 22 kJ mol–1; S d = –0.29 kJ mol–1 K–1). This last phenomenon proved particularly slow for the system under consideration, probably because the biocatalyst link to the mycelium was able to improve its thermostability. In view of future continuous application, the effects of operating time, starting substrate concentration and temperature on the theoretical integral productivity of a fixed-bed column filled with this biocatalyst have been investigated.  相似文献   
998.
The chiral recognition ability of the chiral stationary phase (CSP) consisting of curdlan (beta-1,3-glucan) triacetate coated on silica gel was clearly changed by the contacting solvents and heat treatment. The chiral recognition ability significantly decreased, particularly at temperatures above 45 degrees C, depending on the racemates. The molecular weight of the curdlan triacetate slightly influenced its ability. The recognition abilities of curdlan tricetate that was lost by heat treatment were partially recovered by contact with methanol. However, when it was contacted with ethanol a different selectivity was observed. The labile chiral recognition ability of curdlan triacetate is in striking contrast to the very stable chiral recognition of cellulose (beta-1,4-glucan) triacetate (Chiralcel OA). This difference may be ascribed to the conformational stability of the acetates consisting of curdlan (beta-1,3-glucan) and cellulose (beta-1,4-glucan) with different sugar linkages.  相似文献   
999.
AIMS: Investigation of concerted effects of cations, i.e. Mg2+ and Mn2+, in combination with their anions, i.e. sulphate, chloride and acetate (Ac), on the physiology of Bacillus licheniformis carrying pHV1431::subC to improve the fermentation medium for serine alkaline protease (SAP) production, whereupon, determination of the acid that can be used in pH control. METHODS AND RESULTS: The cell concentrations increased with the increase in MnSO4 and Mn(Ac)2 concentrations, and the highest values were obtained at Co(MnSO4) = 0.20 mmol l-1 and Co(Mn(CH3COO)2) = 4.0 mmol l-1, as 2.3 and 2.2 g l-1, respectively. However, Co(MnCl2) did not influence biomass concentration. SAP production was inhibited with MnCl2 after Co(MnCl2) = 0.60 mmol l-1, but with MnSO4 SAP production was inhibited drastically. Whereas, at high concentrations of Mn(Ac)2 SAP production increased and the highest activity was obtained as ASAP = 1285 U ml-1 at t = 65 h. With the Mg compounds, cell concentrations increased with the increase in the concentrations of MgSO4, MgCl2 and Mg(Ac)2; and the anions did not show any influence on the cell growth. Similar to the results of Mn compounds, the glucose consumption rate increased with the increase in MgSO4 and MgCl2 concentrations; contrariwise, decreased with the increase in Mg(Ac)2 concentrations, due to the use of acetate as the second carbon source. Co(MgSO4) = 0.40 mmol l-1, Co(MgCl2) = 1.60 mmol l-1 and Co(Mg(Ac)2) = 0.40 mmol l-1 were the optimum concentrations separately, and the highest SAP activity was obtained with Mg(Ac)2 as ASAP = 1338 U ml-1 at t = 47 h. Consequently, ion acetate and its acid HAc appear, respectively, as the superior anion for the essential cations and the control agent for pH control in the bioreactor. Finally, optimum initial concentrations and the concerted effects of Mg(Ac)2 and Mn(Ac)2 were investigated, and the optimum concentrations were found respectively as 0.40 and 0.80 mmol l-1, while the maximum activity was obtained as ASAP = 1010 U ml-1 at a shortened cultivation time of t = 39 h. CONCLUSIONS: Mn(Ac)2 and Mg(Ac)2 together enhanced the cell formation and SAP synthesis rates, moreover, SAP synthesis started at an earlier cultivation time. SIGNIFICANCE AND IMPACT OF THE STUDY: Each inorganic compound with its cation and anion has dual effect on the metabolism. Mg2+ and Mn2+ at their specific concentrations influence the regulation of the pathways that might cause better coupling of supply and demand for the amino acids on the basis of the amino acid composition of the enzyme molecule.  相似文献   
1000.
The purpose of this research was to study the chemical reactivity of a somatostatin analogue octreotide acetate, formulated in microspheres with polymers of varying molecular weight and co-monomer ratio under in vitro testing conditions. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) microspheres were prepared by a solvent extraction/evaporation method. The microspheres were characterized for drug load, impurity content, and particle size. Further, the microspheres were subjected to in vitro release testing in acetate buffer (pH 4.0) and phosphate buffered saline (PBS) (pH 7.2). In acetate buffer, 3 microsphere batches composed of low molecular weight PLGA 50∶50, PLGA 85∶15, and PLA polymers (≤10 kDa) showed 100% release with minimal impurity formation (<10%). The high molecular weight PLGA 50∶50 microspheres (28 kDa) displayed only 70% cumulative release in acetate buffer with significant impurity formation (∼24%). In PBS (pH 7.4), on the other hand, only 50% release was observed with the same low molecular weight batches (PLGA 50∶50, PLGA 85∶15, and PLA) with higher percentages of hydrophobic impurity formation (ie, 40%, 26%, and 10%, respectively). In addition, in PBS, the high molecular weight PLGA 50∶50 microspheres showed only 20% drug release with ∼60% mean impurity content. The chemically modified peptide impurities inside microspheres were structurally confirmed through Fourier transform-mass spectrometry (FT-MS) and liquid chromatography/mass spectrometry (LC-MS/MS) analyses after extraction procedures. The adduct compounds were identified as covalently modified conjugates of octreotide with lactic and glycolic acid monomers within polymeric microspheres. The data suggest that due to steric hindrance factors, polymers with greater lactide content were less amenable to the formation of adduct impurities compared with PLGA 50∶50 copolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号